

Effect of population structure on protein-yield improvements in spring wheat (*Triticum aestivum* L. em Thell)*

S. Kibite¹ and L. E. Evans²

¹ Research Scientist, Agriculture Canada, Lacombe Research Station, Lacombe, Alberta T0C 1S0, Canada

² Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada

Received January 7, 1987; Accepted April 24, 1987

Communicated by A. R. Hallauer

Summary. In a study designed to develop a more efficient breeding method for concurrent protein-yield improvements in wheat (*Triticum aestivum* L. em. Thell), 7 base populations [2 F_2 's, 1 intermated F_2 (IF₂) and 4 partial backcross (PBC) populations] developed from biparental crosses involving 2 Canadian hard red spring (CHRS) and 2 Canadian utility (CU) wheat cultivars were evaluated in Winnipeg, Manitoba, Canada. The IF₂ and PBC populations were generated for comparison with conventional F_2 populations and to determine which of the 4 methods of population development would provide a more efficient means of producing potentially superior genetic recombinants. Parameters pertaining to means, variances, correlations, heritabilities and frequencies of desirable and undesirable progenies were used to evaluate the limitations to genetic gain that may be expected from selection for GY and GPC in F_2 , IF₂, CHRS-PBC and CU-PBC populations. Analysis of protein and yield data from 105 S_1 lines derived from each of the 7 populations showed the CU-PBC's to have the highest grain yield (GY) and the lowest grain protein concentration (GPC) means; and the CHRS-PBC's, the lowest GY and the highest GPC means. The F_2 and IF₂ populations were intermediate for both characteristics. Populations developed from the same biparental cross did not differ significantly with respect to the majority of genetic parameters. However, desirable progenies combining high GY with high GPC were more frequent in the CU-PBC, and least frequent in the CHRS-PBC populations. The observed superiority of the CU-PBC populations appeared to be related to the advantage the

system has in preserving the genetic integrity of a proven cultivar, while adding desirable genetic factors from another cultivar, thus capitalizing on introgression and upgrading simultaneously.

Key words: Wheat – Grain yield – Grain protein – Population structure – Intermating – Partial back-crossing

Introduction

Two major market classes of spring wheat, the Canadian Hard Red Spring (CHRS) wheat and the Canadian Utility (CU) wheat are produced and marketed in Western Canada. Typical CHRS cultivars are characterized by excellent baking and milling qualities, adequate disease resistance and relatively good agronomic characteristics. The doughs made from CHRS cultivars have excellent handling properties, and are not critical in their mixing and fermentation requirements (Waterer and Evans 1985). Unfortunately, however, all current CHRS cultivars have a relatively low yield potential.

Canadian utility wheat cultivars are typified by good milling qualities and adequate disease resistance, but they are generally inferior in baking qualities. Their major attribute is a distinct and significant yield advantage over CHRS cultivars (Waterer and Evans 1985).

Attempts to combine in one genotype the desirable attributes from CHRS and CU wheats has had limited success. There is a general consensus among wheat breeders that this lack of success is mainly due to negative correlations that exist between grain yield (GY) and grain protein concentration (GPC). Attempts to explain further the cause or causes of the negative correlations between GY and GPC have drawn much

* Contribution No. 549 from Agriculture Canada, Lacombe Research Station. Research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada

less consensus with the result that there is a proliferation of theories on the subject. Baker et al. (1968) suggested that genetic factors such as linkage or pleiotropy are the basis for negative protein-yield relationships. Pepe and Heiner (1975) postulated that physiological factors such as complex source-sink interactions during a major part of the grain filling period are the primary causes of the negative correlations between GY and GPC.

Similar explanations were provided by McNeal and Davis (1966) whose experiments showed that the supply of nitrogenous products needed for protein production could become limiting before the additional kernels produced by high yielding genotypes mature, thereby causing unfavourable protein-yield relationships.

A biochemical postulate was forwarded by Bhatia and Rabson (1976). They reasoned that since more energy is needed to synthesize proteins than is required to synthesize the same mass of carbohydrates, competition for energy and substrate between these two metabolic end-products (proteins and carbohydrates) could cause negative yield-protein relationships.

Successful pure line breeding requires superior segregating populations from which homozygous lines can be selected. The study reported herein was conducted to identify an operationally simple population structure that will enhance concurrent protein-yield improvements in Canadian spring wheats. The stimulus to conduct the research came from several empirical and computer simulation studies which developed the concept that intermating (Hanson 1959; Miller and Rawlings 1967; Humphrey et al. 1969; Meredith and Bridge 1971) and partial backcrossing (Lawrence and Frey 1975; Reddy and Comstock 1976; Kenworthy and Brim 1979; Ho and Comstock 1980; Dudley 1982) could augment existing genetic variability and thereby improve the efficiency of selection for desirable genetic recombinants. Specific objectives of the study were: (1) to compare the F_2 , intermated F_2 (IF_2) and partial backcross (PBC) populations developed from the same set of biparental crosses for genetic parameters affecting the improvement of GY and GPC; and (2) based on these comparisons, to identify a breeding method that would provide increased opportunities for selecting high yielding-high protein cultivars.

Materials and methods

Four common spring wheat (*Triticum aestivum* L.) genotypes, 'Sinton', 'Coteau', NB-131 and 'Glenlea' were chosen for use as parental lines. Sinton is a CHRS wheat developed from the cross CT-262/'Manitou'. Coteau is also a CHRS cultivar bred in North Dakota, USA, from the cross ND-496 sib//ND-487/'Fletcher'. NB-131 is an experimental high yielding-low protein genotype derived from the cross 'Tobari-66'/'Gaines'. Glenlea is a CU wheat selected from the cross 'Pembina'/2*

Table 1. Pedigrees and experimental designations of 7 populations developed from 2 biparental crosses

Parental combination	Pedigree	Experimental designation
Cross 1		
Glenlea × Sinton	Glenlea/Sinton	F2-1
	Glenlea/Sinton(F_2)/Glenlea/ Sinton(F_2)	IF2
	Glenlea/ $2^*Sinton$	PBC-SINT
	Glenlea/ $2^*Sinton$	PBC-GLEN
Cross 2		
NB-131 × Coteau	NB-131/Coteau	F2-2
	NB-131/ $2^*Coteau$	PBC-COTE
	NB-131/ $2^*Coteau$	PBC-N131

'Bage'//CB-100. From these 4 genotypes 7 populations [2 F_2 's, 1 intermated F_2 (IF_2), and 4 partial backcross (PBC) populations] were generated. Four of the populations were developed from Glenlea-Sinton parental combination (hereafter designated as 'cross 1') and the remaining 3 populations were produced from NB-131 and Coteau parental combination (hereafter designated as 'cross 2'). The pedigrees and experimental designations (abbreviated names) of the 7 populations are listed in Table 1.

Each F_2 population was produced by self-pollinating about 20 F_1 plants. Each PBC population was developed using more than 50 F_1 plants and a single dose of backcrossing. A minimum of 590 kernels were produced for each F_2 and PBC population. The IF_2 population was generated only in cross 1 using the following procedure. About 240 F_2 kernels were planted in each of two greenhouse benches designated as 'bench 1' and 'bench 2', to produce about 120 F_2 plants in each bench. To preclude chances of assortive mating, multiple planting dates were used in each greenhouse bench. At anthesis one spike from bench 1 was used to pollinate at random one and only one spike grown in bench 2; and similarly one spike from bench 2 was used to pollinate at random one and only one spike in bench 1. In this manner, about 287 F_2 spikes were successfully pollinated, out of which 192 produced 3 or more kernels. Three kernels from each of the 192 spikes were bulked to produce a balanced composite sample of the IF_2 population.

Seed of all populations were increased in a spaced plant nursery during the summer of 1978. The field experiments were conducted the following year at the University of Manitoba Research Farm in Winnipeg, Canada, on fertile soils that were planted to faba beans (*Vicia faba* L.) in the previous season. The experiments comprised two tests. Test 1 consisted of multiple (15) entries of each of Glenlea and Sinton, and a random sample of 105 S_1 lines derived from each of the 4 populations in cross 1. Similarly, test 2 consisted of 15 entries of each of NB-131 and Coteau along with a random sample consisting of 105 S_1 lines derived from each of the three populations in cross 2. Each test was conducted as a modified RCBD with 3 replications. The modifications entailed a block-within sets-within replicate arrangement in which the 105 entries from each population were divided into 15 groups, each group consisting of 7 entries. A block was assigned to each population and included all 7 members in a group plus a

single entry of each of the corresponding parental cultivars for a total of 9 plots/block. A set was composed of 4 blocks in test 1, and 3 blocks in test 2. The entries within blocks and the blocks within sets remained together in all replications, but were randomized to assign populations to blocks first, and then entries within blocks. Plots were 3 rows, 3.0 m long with 15 cm between rows. A seeding rate of 510 kernels m^{-2} was used.

Grain yield and GPC were recorded on a plot basis. Grain yield was measured as the total weight of grain harvested from each plot. Grain protein concentration was determined on a 0% moisture basis using the standard Kjeldahl (boric acid modification) method. Environmental conditions in the nursery were conducive to uniform stand establishment and vigorous plant growth, but because of errors during planting and combine harvesting, GY or GPC data from 13 plots were missing. The missing values were estimated using the procedure outlined by Steel and Torrie (1960).

Analyses of variance (ANOVA) were conducted in two ways. First, ANOVA for blocks-within sets-within replications design were conducted to compare population means within each of the two tests. Thereafter, ANOVA and ANCOVA (analysis of covariance) were calculated for each population separately to obtain estimates of phenotypic and genetic variances and covariances. Inclusion of blocks and sets as sources of variation and covariation in the latter analyses caused two problems: (1) genetic variance estimates for some of the population became negative when sets and blocks were included in the analyses; and (2) the phenotypic variance estimates for some of the population became smaller than the phenotypic variance estimates calculated for the corresponding parental genotypes. To avoid these problems, blocks and sets were ignored. The pertinent portions of the ANOVA and ANCOVA from which variances and heritabilities of GY and GPC, and covariances and correlations between GY and GPC were estimated were as follows:

Source	Mean square	Variance expectation	Mean cross product	Covariance expectation
Replications	MS 3	$\sigma_e^2 + g\sigma_r^2$	CP3	$\sigma_{exy} + g\sigma_{rxy}$
Genotypes	MS 2	$\sigma_e^2 + r\sigma_g^2$	CP2	$\sigma_{exy} + r\sigma_{gxy}$
Error	MS 1	σ_e^2	CP1	σ_{exy}

Genetic variances (σ_g^2) were estimated as:

$$\sigma_g^2 = (MS2 - MS1)/r.$$

Standard errors of the genetic variances were calculated using the method of Anderson and Bancroft (1952).

Phenotypic variances (σ_p^2) were estimated as:

$$\sigma_p^2 = \sigma_e^2 + \sigma_r^2/r.$$

Genetic covariance (σ_{gxy}) was estimated as:

$$\sigma_{gxy} = (CP2 - CP1)/r.$$

Phenotypic correlations (r_p) were calculated as Pearson's product moment correlations (Steel and Torrie 1960). Entry means over replicates were used in the analyses.

Genetic correlation (r_g) was estimated as follows:

$$r_g = [\sigma_{gxy}/(\sigma_g^2 + \sigma_g^2)]^{-0.5},$$

where σ_{gxy} is the genetic covariance of GY with GPC; and σ_g^2 and σ_g^2 are the genetic variances of GY and GPC, respectively.

The standard error for the r_g 's were estimated using the method outlined by Mode and Robinson (1959); r_g 's were considered significant if their absolute values exceeded twice the S.E.

Broad-sense heritability was estimated on a plot basis by using the formula

$$h_b = [(\sigma_g^2)/(\sigma_g^2 + \sigma_e^2/r)]^{-0.5}.$$

Results

Comparison of means

Although the parental cultivars were included in the same experiments as the populations, the parental data were analyzed separately. A paired *t*-test (Steel and Torrie 1960) was used to compare the parental lines within each cross (i.e. Glenlea with Sinton, and NB-131 with Coteau). The results (Table 2) indicated that Glenlea was clearly superior to Sinton in GY, but its GPC was relatively inferior. Similarly, NB-131 out-yielded Coteau by more than 25%, but its GPC compared to the same cultivar was about 2.0% points lower.

According to Dyke and Baker (1975), if selection is equally effective in populations with unequal means, highest performing progenies will be found more frequently in the population with the highest mean. Consistent with this theory, we assumed that concurrent protein-yield improvement could be achieved if the breeding strategy involved a method of increasing the mean GY of the population without reducing its mean GPC, or conversely, if the mean GPC was increased without causing a significant reduction in mean GY. Since the majority of the wheat breeders in Canada are using the F_2 and subsequent generations in the selfing series, we decided to compare the GY and GPC means of the S_1 lines in the intermated and partial back-crossed populations with the means calculated in the corresponding F_2 population as represented by F_3 lines. The results (Table 3) indicated that partial backcrossing to the CU parent increased the mean GY (relative to the F_2) by 12.5% and 5.0% in crosses 1 and 2, respectively. In both crosses, the associated reductions in mean GPC were relatively small (0.2 and 0.7% points in crosses 1 and 2, respectively) leading us to speculate that partial backcrossing to the CU parent could provide a larger number of desirable progenies than one would hope to find in conventional F_2 populations. In contrast, partial backcrossing to the CHRS parent increased the mean GPC by only 0.2 and 0.4% points in crosses 1 and 2, respectively; but these GPC increments were accompanied by large and significant yield reductions (approximately 6% in cross 1 and 7% in cross 2). These results indicate that it could be more difficult to select for superior genetic recombinants in the CHRS-

Table 2. Means and standard errors of GY and GPC of 4 parental genotypes used in the study

Parental genotype	GY (g/m ²)	GPC (%)
Glenlea	231.4 ± 4.3	18.2 ± 0.1
Sinton	129.2 ± 3.8	19.6 ± 0.1
Difference	102.2 **	1.4 **
NB-131	225.7 ± 6.9	18.1 ± 0.1
Coteau	180.4 ± 2.9	20.1 ± 0.1
Difference	45.3 **	2.0 **

** Significantly different at the 1% level of significance using student *t*-test

PBC populations than it would be in conventional F_2 populations.

Interminating was performed in cross 1 only. The results (Table 3) showed that a single dose of interminating did very little to improve the mean GY, and caused only slight improvement in mean GPC.

Comparison of variances

Estimates of phenotypic and genetic variance components are presented in Table 4. Application of the *F*-ratio (Steel and Torrie 1960) as a test criterion for determining the equality of the phenotypic variances revealed that populations within each cross were essentially similar in phenotypic variations for GY and GPC.

The genetic variances were compared after adding or subtracting the associated standard errors to establish the 95% confidence limits. Compared to the corresponding F_2 's, the PBC-SINT and the PBC-COTE populations had lower ($P < 0.05$) genetic variances for GPC and GY, respectively. It would appear that the reduced genetic variation in these populations could be a major constraint in maximizing GY and GPC.

The PBC-GLEN and the PBC-N131 populations did not differ significantly from the corresponding F_2 's in terms of genetic variation for GY and GPC, indicating that these two populations could have provided as much opportunity as the F_2 's for selecting in either trait. The F_2 and IF₂ populations in cross 1 had similar genetic variances for both traits. These results indicated that there was very little to be gained, in terms of increased genetic variability, from a single cycle of interminating an F_2 population.

Comparison of correlation coefficients

Estimates of phenotypic, genetic and environmental correlations between GY and GPC are presented in Table 5. The phenotypic correlations ranged from -0.309 to -0.411 and from -0.410 to -0.550 in crosses 1 and 2, respectively, and were highly significant ($P < 0.01$).

Table 3. Mean GY and mean GPC in 7 populations developed from 2 biparental crosses

Population	GY (g/m ²)		GPC (%)	
	Cross 1		Cross 2	
F2-1	167.7 b		19.2 b	
IF2	172.0 b		19.4 a	
PBC-GLEN	188.7 a		19.1 b	
PBC-SINT	158.3 c		19.4 a	

* Means within a cross followed by the same letter were not significantly different at the 5% level of significance on Duncan's multiple range test

Table 4. Estimates of phenotypic (σ_p^2) and genetic (σ_g^2) variance components and standard errors for GY and GPC in 7 populations developed from 2 biparental crosses

Population	σ_p^2		σ_g^2	
	GY	CPC	GY	GPC
Cross 1				
F2-1	6.778	0.320	2,610 ± 555	0.180 ± 0.030
IF2	6.344	0.305	2,014 ± 477	0.150 ± 0.030
PBC-GLEN	6.445	0.294	1,780 ± 378	0.130 ± 0.028
PBC-SINT	5.606	0.236	1,930 ± 433	0.090 ± 0.020
Cross 2				
F2-2	4,310	0.602	1,650 ± 332	0.203 ± 0.018
PBC-N131	3,470	0.441	1,503 ± 341	0.190 ± 0.011
PBC-COTE	4,736	0.456	630 ± 243	0.220 ± 0.014

Fisher's *z* transformation (Steel and Torrie 1960) was applied to test the homogeneity of the phenotypic correlation coefficients within each cross. The results indicated that the method of population development had no effect on the degree of phenotypic association between the two traits.

The genetic correlation between GY and GPC was significant in only 1 of the 7 populations, suggesting that the negative phenotypic correlations were not caused by genetic factors such as linkage or pleiotropy.

Environmental correlations between GY and GPC were highly significant ($P < 0.01$), but the coefficients (within a cross) were not significantly different from each other when compared by means of Fisher's *z* transformation.

Table 5. Estimates of phenotypic (r_p), genetic (r_g) and environmental (r_e) correlations between GY and GPC in 7 populations developed from 2 biparental crosses

Population	Correlation coefficients		
	r_p	r_g^a	r_e
Cross 1			
F2-1	-0.33**	-0.57	-0.85**
IF2	-0.35**	-0.60	-0.88**
PBC-GLEN	-0.41**	-0.70	-0.84**
PBC-SINT	-0.31**	-0.64	-0.88**
Cross 2			
F2-2	-0.44**	-0.55	-0.79**
PBC-N131	-0.41**	-0.78	-0.87**
PBC-COTE	-0.55**	-0.71	-0.30**

** Correlation coefficients significant at the 1% level of significance

^a Underlined genetic correlation coefficient exceeded twice its standard error

Table 6. Broad-sense heritability estimates for GY and GPC in 7 populations developed from 2 biparental crosses

Population	Heritability	
	GY	GPC
Cross 1		
F2-1	0.39	0.46
IF2	0.27	0.42
PBC-GLEN	0.37	0.38
PBC-SINT	0.34	0.32
Cross 2		
F2-2	0.34	0.51
PBC-N131	0.33	0.42
PBC-COTE	0.50	0.46

Comparison of heritability estimates

Broad-sense heritability estimates were calculated according to component of variance method (Mather and Jinks 1971) and the results are presented in Table 6. In cross 1, both traits appeared to be moderately heritable, based on the estimates that ranged from 0.27 to 0.39 for GY, and from 0.32 to 0.46 for GPC. In cross 2, broad-sense heritability estimates ranged from 0.33 to 0.50 for GY, and from 0.42 to 0.51 for GPC, and were high enough to indicate that genetic improvement of both traits could be made through selection.

A comparison of the heritability estimates using the exact 90% ($1-\alpha=0.90$) confidence limits (Knapp et al.

1985) indicated that populations within a cross did not differ significantly with respect to heritabilities for either trait.

Frequencies of desirable and undesirable progenies

Linear regression analyses were used to compare the relative potential of each population to produce desirable genetic recombinants. These analyses were conducted with the assumption that a population in which higher GPC values are predicted (at a series of GY levels) would yield a larger number of desirable progenies, compared to one that does not show this attribute. In cross 1, the regression coefficients (b values) were highly significant and ranged from a low of -0.089 in the PBC-SINT population to a high of -0.151 in the PBC-GLEN population (Fig. 1). For the majority of the GY values, predicted GPC was higher in the PBC-GLEN population than in any of the other 3 populations generated from the same cross.

In cross 2, the b values ranged from -0.197 to -0.247 (Fig. 2) and were highly significant ($P < 0.01$). For the majority of the GY values, predicted GPC's were higher in the PBC-N131 population than in the other 2 populations developed from the same cross.

Populations were also compared for the actual number of 'desirable' and 'undesirable' progenies they contained. 'Desirable' progenies were arbitrarily defined as those lines which, in comparison to the respective parental cultivars, showed either an increase in GPC without a reduction in GY or showed an increase in GY without a significant reduction in GPC. 'Undesirable' progenies were defined as those lines which were inferior in either GY or GPC compared to the parents from which they were generated. A one-tailed LSD test was used to discriminate the statistical difference of each progeny line from its parental cultivars. Since the parents of each cross were on the extreme high and low ends of the GY and GPC distribution curves, we chose to use the 5% probability level for making a type I error (Steel and Torrie 1960). In cross 1, a relatively large number of desirable, and a small number of undesirable progenies were identified in the PBC-GLEN population (Table 7). In contrast, the PBC-SINT population was composed of few desirable and a relatively large number of undesirable progenies.

In cross 2, numerous desirable and relatively few undesirable progenies were identified in the PBC-N131; whereas the PBC-COTE population was found to be composed of predominantly undesirable genotypes. These findings are in agreement with the results from linear regression analyses (Figs. 1 and 2) and suggest that partial backcrossing to CU cultivars could

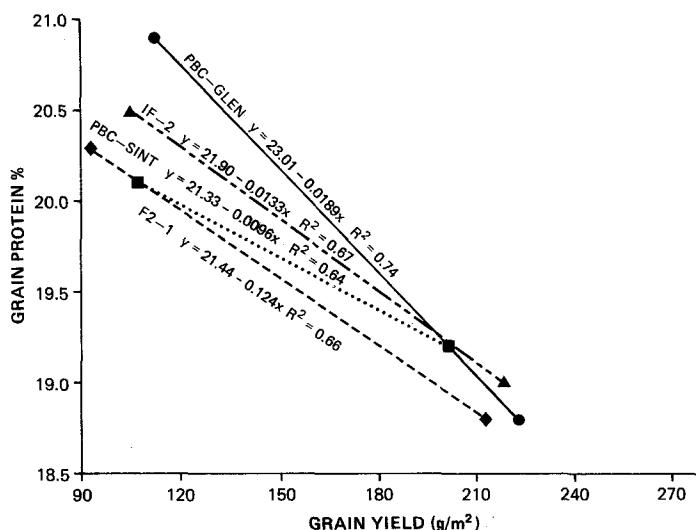


Fig. 1. Yield-protein relationships in 4 populations developed from cross 1

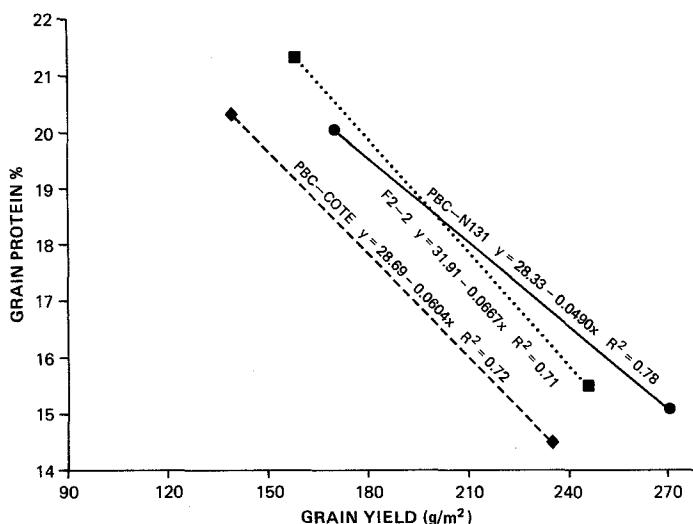


Fig. 2. Yield-protein relationships in 3 populations developed from cross 2

Table 7. Percent of desirable and undesirable progenies in each of 7 populations developed from 2 biparental crosses

Population	Percent of progeny lines	
	Desirable	Undesirable
Cross 1		
F₂-1	2.9	26.7
IF₂	9.5	33.3
PBC-GLEN	11.4	17.1
PBC-SINT	1.9	48.6
Cross 2		
F₂-2	33.3	16.2
PBC-N131	43.8	1.9
PBC-COTE	32.3	19.0

provide a more efficient means of generating high yielding-high protein populations.

Discussion

The four genotypes, Coteau, Sinton, Glenlea and NB131 were chosen partly because of their diverse (unrelated) parentage, and partly because of their suitability to represent much of the elite germplasm used in crossing programs in Western Canada. All four genotypes are well adapted to Manitoba, Canada, and have agronomic and quality characteristics that are typical of their respective market classes. The IF₂ and PBC populations were generated for comparison with

conventional F_2 populations and to determine which of the 4 methods of population development would provide a more efficient means of producing potentially superior genetic recombinants.

Since the seven populations were evaluated in one environment only, the estimates for some of the genetic parameters may have been biased due to genotype-by-environment interaction variances. Despite these limitations, however, the study has generated valuable information indicating that intermatting did very little to alter the GY and GPC means, or to reduce the strength of the phenotypic and genetic correlations between the two traits. These results are at variance with the findings of other researchers (Miller and Rawlings 1967; Loffler et al. 1983) who showed that intermatting would break undesirable linkage blocks, and thereby, would increase the frequency of desirable genetic recombinants in the resultant population. The reasons for the IF_2 population not meeting these expectations is not readily discernible from the information on hand. Pederson (1974) and Bos (1977) have discussed the idea that intermatting would weaken negative genetic correlations only if it is enforced over several cycles and only when each cycle of intermatting is preceded by selection for superior progenies. In the present study, intermatting was restricted to only one cycle and was not preceded by selection. These factors may have contributed to the discrepancies between the results reported herein and those published elsewhere (e.g. Loffler et al. 1983). Nonetheless, our results are in agreement with other reports (Altman and Busch 1984; Frederickson and Kronstad 1985) showing lack of beneficial results from intermatting.

The lack of sufficient differences between the F_2 and IF_2 populations for the majority of the genetic and statistical parameters considered in this study suggest that the feasibility of improving GY and GPC should be equally difficult in the F_2 and IF_2 populations. However, since intermatting would add an extra generation to the time-scale, the additional labour and time requirements would make it unsuitable for use in most wheat breeding programs.

Briggs and Allard (1953), and more recently Dudley (1982) have suggested that partial backcrossing is more effective than selfing for recombination between linked genes because it allows for a smaller number of substitutions to occur without breaking existing combinations of desirable genes. Our results indicate that partial backcrossing does not always provide superior base populations. In each of the two crosses that we examined, partial backcrossing to the CHRS parent reduced mean GY, increased mean GPC, and produced only minor effects on variances, correlations and heritabilities of GY and GPC. It also reduced the

frequency of desirable progenies to very low levels so as to make use of the resultant populations impractical.

Partial backcrossing to CU genotypes, on the other hand, significantly increased the mean GY, slightly depressed the mean GPC, and had only minor effects on the variances, correlations and heritabilities of either trait. Desirable progenies were more numerous and undesirable progenies less numerous in CU backcrossed populations than in other populations (conventional F_2 , intermated F_2 , and CHRS partial backcrosses) developed from the same biparental cross.

Some plant breeders have succeeded in obtaining favourable results from the use of partial backcrossing in their breeding programs. The Canadian spring wheat cultivar, 'Selkirk' was selected from a program in which restricted backcrossing was followed by selection for disease resistance, yield and bread-making qualities (Peterson 1958). Graefius et al. (1976) and Meredith (1977) have reported beneficial results from partial backcrossing in barley and cotton, respectively. These authors attribute their success to the method which tended to preserve the genetic integrity of an already proven cultivar while adding genetic factors from another cultivar, thus capitalizing on introgression and upgrading simultaneously. Based on the results from the present study, and the reports cited above, it is postulated that partial backcrossing to CU genotypes could provide a more efficient means of developing superior (high yielding-high protein) base populations.

Acknowledgements. The authors wish to express thanks to D. Zuzen for his helpful suggestions during the course of this investigation, and to Loraine Martin for typing the manuscript.

References

- Altman DW, Busch RH (1984) Random intermatting before selection in spring wheat. *Crop Sci* 24: 1085-1089
- Anderson RL, Bancroft TA (1952) Statistical theory in research. McGraw-Hill, New York
- Baker RJ, Bendelow RM, Kaufmann ML (1968) Inheritance of and interrelationships among yield and several quality traits in common wheat. *Crop Sci* 8: 725-728
- Bhatia CR, Rabson R (1976) Bio-energetic considerations in cereal breeding for protein improvement. *Science* 194: 1418-1421
- Bos I (1977) More arguments against intermatting F_2 plants of a self-fertilizing crop. *Euphytica* 26: 33-46
- Briggs FN, Allard RW (1953) The current status of the back-cross method of plant breeding. *Agron J* 45: 122-124
- Dudley JW (1982) Theory for transfer of alleles. *Crop Sci* 22: 631-637
- Dyke PL, Baker RJ (1975) Variation and covariation of agronomic and quality traits in two spring wheat populations. *Crop Sci* 15: 161-165
- Frederickson LJ, Kronstad WE (1985) A comparison of intermatting and selfing following selection for heading date in two diverse winter wheat crosses. *Crop Sci* 25: 555-560

Grafius JE, Thomas RL, Barnard J (1976) Effect of parental component complementation on yield and components of yield in barley. *Crop Sci* 16:673–677

Hanson WD (1959) The breakup of initial linkage blocks under selected mating systems. *Genetics* 44:857–868

Ho YT, Comstock RE (1980) Combining superior alleles from two homozygous populations in a cross-fertilizing species. *Genet Res* 36:277–287

Humphrey AB, Matzinger DF, Cockerham CC (1969) Effect of random intercrossing in a naturally self-fertilizing species, *Nicotiana tabacum* L. *Crop Sci* 9:495–497

Kenworthy WJ, Brim CA (1979) Recurrent selection in soybean. I. Seed yield. *Crop Sci* 19:315–318

Knapp SJ, Stoup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. *Crop Sci* 25:192–194

Lawrence PK, Frey KJ (1975) Backcross variability for grain yield in oat species crosses (*Avena sativa* L. \times *A. sterilis* L.). *Euphytica* 24:77–85

Loffler CM, Busch RH, Wiersma JV (1983) Recurrent selection for grain protein percentage in hard red spring wheat. *Crop Sci* 23:1097–1101

Mather K, Jinks JL (1971) Biometrical genetics, 2nd edn. Cornell University Press, Ithaca, New York

McNeal FH, Davis DJ (1966) Protein content of wheat kernels from different parts of the spike. *Agron J* 58:635–636

Meredith WR (1977) Backcross breeding to increase fiber strength of cotton. *Crop Sci* 17:172–175

Meredith WR, Bridge RR (1971) Breakup of linkage blocks in cotton, *Gossypium hirsutum* L. *Crop Sci* 11:695–698

Miller PA, Rawlings JO (1967) Breakup of initial linkage blocks through intermatting in a cotton breeding population. *Crop Sci* 7:199–204

Mode CF, Robinson HR (1959) Pleiotropism and the genetic variance and covariance. *Biometrics* 15:518–573

Pederson DG (1974) Arguments against intermatting before selection in a self-fertilizing species. *Theor Appl Genet* 45:157–162

Pepe JF, Heiner RE (1975) Plant height, protein percentage, and yield relationships in spring wheat. *Crop Sci* 15:793–797

Peterson RF (1958) Discussions on methods and procedures in wheat breeding. In: Proc 1st Int Wheat Genet Symp. University of Manitoba, Winnipeg, Canada

Reddy BVS, Comstock RE (1976) Simulation of the backcross breeding method. I. Effect of heritability and gene number on fixation of desired alleles. *Crop Sci* 16:825–830

Steel RGD, Torrie JH (1960) Principles and Procedures of Statistics. McGraw-Hill, New York

Waterer JG, Evans LE (1985) Comparison of Canadian and American hard red spring wheat cultivars. *Can J Plant Sci* 65:831–840